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Large Igneous Provinces (LIPs) can have a significant global climatic effect asmonitored by sedimentary trace and
isotopic compositions that record paleo-seawater/atmosphere variations. Improved U-Pb dating (with better
than 0.1 Myr resolution) for several LIPs is confirming a long-proposed mass extinction-LIP link. The most dra-
matic climatic effect is global warming due to greenhouse-gases from LIPs. Subsequent cooling (and even global
glaciations) can be caused by CO2 drawdown throughweathering of LIP-related basalts, and/or by sulphate aero-
sols. Additional kill mechanisms that can be associated with LIPs include oceanic anoxia, ocean acidification, sea
level changes, toxic metal input, essential nutrient decrease, producing a complex web of catastrophic environ-
mental effects. Notably, the size of a LIP is not the only important factor in contributuing to environmental impact.
Of particular significance are the rate of effusion, and the abundance of LIP-produced pyroclasticmaterial and vol-
atile fluxes that reach the stratosphere. While flood basalt degassing (CO2, SO2, halogens) is important (and is
also from associated silicic volcanism), a significant amount of these gases are released from volatile-rich sedi-
mentary rocks (e.g. evaporites and coal horizons) heated by the intrusive component of LIPs. Feedbacks are im-
portant, such as global warming leading to destabilization of clathrates, consequent release of further greenhouse
gases, and greater global warming. In the broadest sense LIPs can affect (or even induce) shifts between Icehouse,
Greenhouse and Hothouse climatic states. However, the specific effects, their severity, and their time sequencing
is specific to each LIP. Based on the robust array of environmental effects due to LIPs, as demonstrated in the
Phanerozoic record, it is suggested that LIP events represent useful timemarkers in the Precambrian Era as prox-
ies for some significant global environmental changes that are preserved in the sedimentary record.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The distribution of life through the Phanerozoic and in the Protero-
zoic is highly discontinuous, primarily driven by environmental chang-
es. The most dramatic and sudden environmental changes are
associated with mass extinction events; these define many of the
boundaries in the Phanerozoic biostratigraphic time scale (e.g.
Gradstein et al., 2012a, 2012b; Ogg et al., 2008, 2016). Less extreme en-
vironmental changes and minor extinction events are also recognized
byexcursions in isotopic proxies for the composition of seawater and at-
mosphere, in the timing of anoxia events, and by sea-level changes, all
reflected in the sedimentary record. This is a fast-evolving vibrant
field of research that is increasingly revealing the pivotal role of LIPs in
environmental changes, particularly those that are abrupt and of short
es, Carleton University, Ottawa,
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duration (on the scale of a few million years). In contrast, those broad
10s to 100s of Myr changes recorded in sedimentary rocks are more
likely linked to plate-boundary processes. Environmental changes can
also be linked to other macro-properties such as changes in solar lumi-
nosity, Earth's orbit, and perhaps in the Earth's magnetic field, and due
to True Polar Wander (e.g. Van Der Meer et al., 2014; Torsvik and
Cocks, 2016). Herein we provide an overview of the environmental im-
pacts of LIPs, and their role as catalysts for faunal and floral collapse and
extinction events. Given the robust link that is becoming increasing ev-
ident between LIPs and abrupt global climatic change, a final section ad-
dresses the utility of LIPs as natural time markers in Precambrian time,
where they represent proxies for ‘golden spikes’ in the sedimentary re-
cord that mark key natural boundaries in Earth history.

1.1. Large Igneous Provinces (LIPs)

Large Igneous Provinces (LIPs) represent large volume (N0.1 Mkm3;
frequently above N1 Mkm3), mainly mafic (-ultramafic) magmatic
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events of intraplate affinity, that occur in both continental and oceanic
settings, and are typically of short duration (b5 Myr) or consist of mul-
tiple short pulses over a maximum of a few 10s of Myr (Coffin and
Eldholm, 1994, 2005; Bryan and Ernst, 2008; Bryan and Ferrari, 2013;
Ernst, 2014 and references therein; cf. Sheth, 2007). They comprise vol-
canic packages (flood basalts), and a plumbing system of dyke swarms,
sill complexes, layered intrusions, and a crustal underplate. LIPs can also
be associated with silicic magmatism (including dominantly silicic
events termed Silicic LIPs, or SLIPs, sometimes including so-called
super-eruptions), carbonatites and kimberlites. LIPs occur at a variable
rate that averages approximately every 20–30 Myr but with possible
peaks associated with supercontinent breakup, back at least to 2.5 Ga
(Figs. 1 and 2).The rate of LIP occurrence in the Archean is less certain
due to its poorer preservation (Ernst, 2014).

LIPs are systematically linked to continental breakup (or attempted
breakup) events, ore deposits of a variety of commodity types (Ernst
and Jowitt, 2013), can have an influence on hydrocarbon and aquifers
(Ernst, 2014; Jowitt and Ernst, 2016), and in the context of this paper,
Fig. 1. Part a–e. Generalized distribution of LIPs and interpreted LIP fragments through time, ba
(SLIPs) are shown (i.e. 0.32–0.28 Ga Kennedy-Connors-Auburn, 0.04 Ga Sierra Madre Occident
on global climate change including extinction events (Ernst, 2014).
The origin of LIPs has been controversial with a range of mechanisms
proposed including: lithospheric delamination, rift related decompres-
sion melting, and edge convection (e.g. King and Anderson, 1998;
Coffin and Eldholm, 1994, 2005; Foulger, 2007, 2012; Ernst, 2014).
However, more accurate age dating (emphasizing the short duration
of many of these huge events), the presence of giant radiating mafic
dyke swarms, seismic tomography, and compositional data for elevated
mantle potential temperatures provide a strong case for a LIP link with
mantle plumeswhose buoyancy ismainly thermal (e.g. Campbell, 2005;
Ernst, 2014 and references therein). A recent paper by Wang et al.
(2016) demonstrates a higher rate of water content (1–2 wt%) in the
primary magmas and trace element compositions consistent with
water-flux contribution to melting for several Phanerozoic LIPs (such
as the 251 Ma Siberian Traps, 201 Ma Central Atlantic Magmatic Prov-
ince (CAMP), 66 Ma Deccan, and 16 Ma Columbia River), suggesting a
model in which an upwelling deep mantle plume interacts with
subduction-transported water at the mid-mantle boundary.
ck to 2.5 Ga (updated from Ernst, 2014). Numbers are in Ga. Selected associated silicic LIPs
al and 0.12 Whitsunday. Maps are in Robinson Projection.
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Fig. 1 (continued).
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1.2. Global extinction events and other environmental changes

As is well established there are repeated catastrophic changes in
fauna and flora in the Phanerozoic Era (Fig. 3). There are five major ex-
tinctions (the so called “Big Five”; end-Cretaceous (66 Ma; 75% of all
species lost) end-Triassic (201 Ma; 80% of species lost), end-Permian
(251 Ma; 95% of species lost), end-Devonian (~375 Ma; 75% of species
lost) and end-Ordovician (444 Ma; 85% of species lost), (e.g. Raup and
Sepkoski, 1982; Sepkoski, 1986; Hallam and Wignall, 1997; Bambach,
2006; Whiteside and Grice, 2016) and a number of minor extinctions
in which smaller percentages of life were wiped out (as measured at
the family, species or genus level and dominantly inmarine or terrestri-
al settings, or both). Accompanying these dramatic changes in fauna
and flora are also rapid shifts in stable isotopes such as Sr, C, O, S, Os,
Mo, Cr, Li, U, and other compositional parameters such as Hg/TOC, in
the sedimentary record that are proxies for rapid changes in seawater
and atmosphere composition (Kendall et al., 2009; Montoya-Pino
et al., 2010; Misra and Froelich, 2012; Cole et al., 2016; Goldberg et al.,
2016; Holmden et al., 2016), and for which, in many cases, LIP can
have an influence, as outlined below.

2. Links between LIPs and global extinction events

The temporal link between LIPs and extinction events appears ro-
bust (Fig. 3). Manymajor, and someminor, LIP events occur within sev-
eral million years or less of global extinctions (e.g. Stothers, 1993;
Courtillot and Renne, 2003; Wignall, 2001, 2005; Bond and Wignall,
2014; Ernst, 2014; Courtillot and Fluteau, 2014; Courtillot et al., 2015;
Bond and Grasby, 2017-this issue). This has become evenmore dramat-
ically demonstratedwith the improvedU-Pb age constraintswhich increas-
ingly now show a precise correlation between some LIP events and
corresponding extinction boundary. The most compelling examples (and
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those with the greatest precision in dating) are currently the Siberian
Traps (252 Ma), CAMP (201 Ma), and the Deccan (ca. 66 Ma) LIPs
(Figs. 1, 3), whose current dating matches precisely in age to the
Permian–Triassic, Triassic–Jurassic, and Cretaceous–Tertiary, boundary
extinctions, respectively (Blackburn et al., 2013; Burgess and Bowring,
2015; Schoene et al., 2015). These ‘smoking gun’ examples are summa-
rized below.

2.1. Strongest correlations—‘smoking guns’

New U-Pb dates on Siberian Traps LIP units (volcanic and intrusive
rocks) demonstrate that much of the total lava/pyroclastic volume
was erupted over b0.5 Myr, before and during the end-Permian mass
extinction, and that magmatism continued for at least another 0.5 Myr
after the extinction event (Burgess et al., 2014; Burgess and Bowring,
2015), building on previous U-Pb and Ar-Ar dating (e.g. Kamo et al.,
1996; Reichow et al., 2009).

Similarly, high precision U-Pb dating on units of the 201 Ma CAMP
event (Figs. 1, 3) demonstrate synchroneity between its earliest volca-
nism and the end-Triassic extinction, in multiple pulses over ~600 kyr,
both at the extinction event and during the start of the subsequent bio-
logic recovery (Blackburn et al., 2013; see also Schoene et al., 2010).
These precise U-Pb data confirm the link with the Triassic-Jurassic ex-
tinction event previously proposed on the basis of earlier Ar-Ar dating,
paleomagnetism, and also constraints from precession studies (Olsen
et al., 2003; Marzoli et al., 1999, 2004; Knight et al., 2004; Verati et al.,
2005; Nomade et al., 2007).

Finally, high precision U-Pb zircon geochronology on the Deccan
shows that the main phase of eruptions initiated at 66 Ma,
~250 kyr before the Cretaceous-Paleogene boundary and that
N1.1 Mkm3 (=×106 km3) of basalt erupted in ~750 kyr (Schoene
et al., 2015). These data as well as earlier less precise geochronology
(40K-40Ar Cassignol–Gillot technique, Ar-Ar, and based on paleomag-
netic data (Chenet et al., 2007, 2008, 2009; Knight et al., 2003; Renne
et al., 2015)) are consistent with the hypothesis that the Deccan LIP
contributed to the end-Cretaceous environmental change and bio-
logic turnover that culminated in the marine and terrestrial mass
extinctions.

Of the five largest extinction events (Fig. 3) only the major
Ordovician–Silurian boundary event has not been correlated with a
LIP event, although recent research has identified potential candidates
(Section 3.2.5.3). Supplementary Table 1 provides a summary of
Phanerozoic LIP events and their confirmed and speculative links with
biostratigraphic boundaries and associated extinctions, along with in-
formation on kill mechanisms where available.

Note that the present paper is not intended to imply that LIPs are the
only driver of mass extinctions in the geological record. However, given
their huge scale and typical short duration (b5Myr), alongwith associ-
ated massive thermal, gas and fluid inputs into the environment, re-
search is increasingly showing that LIPs can exert major global shifts
in environmental conditions at the Earth's surface through geological
time. This is particularly true for those short term (fewMyr) shifts in en-
vironmental conditions. As noted above, the longer duration excursions
are more likely linked to the plate tectonic cycle. In addition, an impor-
tant driver of extinction events is bioevolutionary changes (e.g. Algeo
et al., 2016). For instance, the development of vascular land plants can
be linked to Middle and Late Devonian environmental effects including
mass extinctions (Algeo and Scheckler, 1998; Algeo et al., 1995, 2001).
Similarly, bioevolutionary changes associatedwith theGreat Ordovician
Biodiversification Event (GOBE) are associated with dramatic environ-
mental changes including the end-Ordovician extinction (e.g. Algeo
et al., 2016 and references therein). Before considering the specific
role of LIPs it is necessary to consider the other type of large size, but
short duration event that has been frequently proposed a driver of cat-
astrophic environmental change, namely bolide impact.

2.2. Meteorite impacts versus LIPs

There has been a heated debate for more than three decades over
whether global extinctions are caused by meteorite impacts and/or LIP
events. Those supporting the impact connection cite the close corre-
spondence in age between the large Chicxulub impact event and the
end-Cretaceous extinction event (e.g. Alvarez et al., 1980; Hildebrand
et al., 1991; Schulte et al., 2010; Richards et al., 2015). Other bolide-
extinction event correlations have been proposed (see Supplementary
Table 1) but each candidate requires more precise dating. For instance,
the ~50 km diameter Siljan impact (Sweden) broadly correlates with
the Frasnian–Famennian extinction in the Devonian (Keller, 2005;
Bond and Wignall, 2014; Bond and Grasby, 2017-this issue). The ~23
km-diameter Rochechouart impact structure of the FrenchMassif Central
yielded a 40Ar/39Ar dating of sanidine (201.4 ± 2.4 Ma, that would cor-
respond to about 203.4 Ma, recalculated after Renne et al. (2010) and
adularia (200.5 ± 2.2 Ma; 2σ) (Schmieder et al., 2010; Youbi et al.,
2014). The similarity with the Triassic-Jurassic U-Pb age of 201.36 ±

Image of Fig. 1


Fig. 2.Global LIPs barcode recordwith selected labelling (updated fromErnst, 2014). Each LIP name is followed by location information: Am=Amazonia, AS=Asia, AU=Australia, CA=
Central America, CC= Congo craton, EU= Europe, gLau=Greenland portion of Laurentia, Lau= Laurentia, Bal = eastern Baltica, SFC= Sao Francisco craton, Kal= Kalahari craton, Kap
= Kaapvaal craton, KKC = Karelia-Kola craton, NA = North America, NAC = North Australian craton, NC = Nain craton, PA = Pacific, Pil = Pilbara craton, SA = South America, Sib =
northern Siberian craton, Sla=Slave craton, Sup=Superior craton,WAC=West African craton,Wyo=Wyoming craton, Yil=Yilgarn craton, Zim=Zimbabwe craton. Names for Silicic
LIPs are in red color, for continental LIPs are in black and for oceanic LIPs are in blue.
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0.17 Ma (Schoene et al., 2010; Blackburn et al., 2013; Wotzlaw et al.,
2014) needs to be tested by more precise U-Pb dating and
chemostratigraphic and magnetostratigraphic studies. Another possible
correlation is a significant group of L-chondrite meteorites impacting in
the Middle Ordovician period, 467.3 ± 1.6 million years ago due to frag-
mentation of a parent body at this time and linked to the GOBE (Schmitz
et al., 2007, 2016; for background on GOBE see Algeo et al., 2016).

Overall correlations between other impacts and other extinction
events are less clear because of the uncertainty in the ages of most
large impacts and await high precision U-Pb dating (e.g. Jourdan et al.,
2009; Racki, 2012). The other long-standing source of uncertainty in
the literature has been in the dating of stage boundaries that mark
these biota changes (including extinction events), but this is becoming
less of concern given steady progress in U-Pb dating of these boundaries
(e.g., Schoene et al., 2015; Blackburn et al., 2013; Wotzlaw et al., 2014;
Burgess and Bowring, 2015; Schoene et al., 2015; Gradstein et al.,
2012a, 2012b; Ogg et al., 2016 and references therein).

Another consideration is a proposed link between impacts and LIP
events. Petersen et al. (2016) note separate pulses in the extinction re-
cord that are linked to the Deccan LIP and the Chicxulub impact. It has
been speculated (Richards et al., 2015; see also Renne et al., 2015)
that the Deccan LIP was already in progress, and then the Chicxulub
impact generated seismic energy that triggered a transient increase in
the effective permeability and thereby increased the rate ofmelt extrac-
tion from theplume head causing the voluminousWai pulse of themain
pulse of the Deccan LIP. Others have promoted (Jones et al., 2002) and
discounted (e.g. Ivanov and Melosh, 2003) a direct link between
major bolide impact and voluminous LIP scale magmatism at the site
of impact or antipodally (see discussion in Ernst, 2014).

The present review focusses on the remarkable spectrum of known
links between LIP events and extinction/environmental effects. If future
work confirms a role for bolide impact in specific events (in addition to
Chicxulub for the end-Cretaceous extinction) then the environmental
effects of the bolide impact can be evaluatedwithin the framework pro-
vided by the LIP record. In such cases the notion byWhite and Saunders
(2005) of a “one–two punch” of a LIP and bolide impact would apply in
cases where a temporal link between evidence of impact and extinction
can be found.

3. Kill mechanisms

There are several ‘key’mechanisms responsible for massive biologi-
cal changes, which are discussed below and which can be partly linked
to the LIP record: global warming, global cooling, anoxic events, ocean

Image of Fig. 2


Fig. 3. Correlation of LIP events with extinction events, updated from Ernst (2014). This figure shows the genus extinction intensity, i.e. the fraction of genera that are present in each
interval of time but do not exist in the following interval. The data are from Rohde and Muller (2005), and are based on Sepkoski (2002). The curve is based on marine genera with
the LIP record superimposed.
(Modified from Fig. A2 in Supplementary files of Rohde and Muller (2005) to include links with the LIP record.)

Fig. 4. Phanerozoic record of mass extinctions, temperature conditions (Hothouse (H), Greenhouse (G), Icehouse (I)), oceanic anoxic events, mercury/TOC anomalies, in comparisonwith
the Phanerozoic LIP record. Incorporates environmental data presentation style after Percival et al., 2015). Open circles are carbon-isotope excursion and/or black shale not recognized as a
OAE Informationmainly from Supplementary Table 1. Global temperatures shifts betweenHothouse, Greenhouse and Icehousemostly after Kidder andWorsley, 2010). LIPs aremarkedby
red bars, and their lower volume continuations, by pink bars.
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acidification, introduction of toxic metals and gases, removal of bio-
essential elements, sea-level changes, and the stepwise oxygenation of
the Earth's atmosphere (Figs. 4, 5, 6). Specific kill mechanisms apply
to the atmosphere, to the ocean, and typically to both (given inter-
change between the atmosphere and ocean). Excellent reviews on as-
pects of the LIP-environmental link exist, such as Courtillot (1999),
Wignall (2001, 2005), Bond and Wignall (2014), and Kidder and
Worsley (2010, 2012), and Bond and Grasby (2017-this issue). Howev-
er, the fast-evolving literature on both aspects (environmental changes
and the LIP record) justify another review which explores not only the
Phanerozoic linkages, but also considers the LIP record more compre-
hensively and expands the discussion into Precambrian time.

3.1. Global warming linked to greenhouse gases from LIPs

3.1.1. Global temperature changes and cycling of Earth between Green-
house, Hothouse and Icehouse conditions as a controlling context

The Earth's environment goes through a range of average tempera-
ture conditions and transitions between these conditions (Greenhouse
to Hothouse and Icehouse). This cycling between these basic conditions
has become a framework for capturing the essential characteristics of
Fig. 5. Flow chart showing environmental effects for both continental and oceanic LIP. Contine
2014). Delta notation used for isotopic ratios (e.g. δO for δ18O)
the overall environmental conditions during the Phanerozoic. As de-
scribed by Kidder and Worsley (2010, 2012) 70% of the time the Earth
is in a Greenhouse condition. The transitions to Hothouse climates
(grouped with Greenhouse climates in terminology of Wignall, 2005;
see also Whiteside and Grice, 2016) are strongly correlated with LIP
events (Fig. 4). The LIP link with ice ages is also robust and is discussed
below, and is caused by sulphur aerosols, and/or from CO2 drawdown
due to weathering of emplaced lavas (Section 3.2). Kidder and
Worsley (2010) note that a Hothouse climate reverts to a default Green-
house state when the LIP activity ends.

3.1.2. Global warming
The geological record through stable isotopic proxies such as δ13C

shows that abrupt increases in the atmospheric concentration of green-
house gases have occurred many times during the Phanerozoic (e.g.
Petersen et al., 2016). The release of several thousand gigatons of isoto-
pically light carbongases has been proposed to be the cause ofwarmpe-
riods at a number of times in the Phanerozoic (e.g. Kidder andWorsley,
2010, 2012), each correlated with a LIP event (Supplementary Table 1;
Figs. 4, 5). In particular, high precision geochronology shows a robust
link between known LIP events and associated bursts of CO2 that caused
ntal LIP modified after Bond and Wignall (2014). Oceanic LIPs modified after Kerr (2005,

Image of Fig. 5


Fig. 6. Link between LIPs and progressive oxygenation of the Earth. Oxygenation curve from Fig. 1 in Lyons et al. (2014). Distribution of Paleoproterozoic glacial intervals from Gumsley
et al. (2017). Source of information on other glacial intervals from other references discussed in text. Global LIP barcode shownwith specific events relevant to the glacial and oxygenation
record labelled. End of LTE = end of Lomagundi-Jatuli Excursion. Paleoproterozoic glaciations (after Gumsley et al., 2017) are: R = Rietfontein, G-R = Gowganda-Rooihoogte, B-D =
Bruce-Duitschland, RL-M = Ramsley Lake-Makganyene. Location labels (in parentheses) after LIP names explained in Fig. 2 caption. Note that the period roughly between 1.8 and
0.8 Ga has been referred to as the ‘boring billion’, reflecting the relative environmental stability during this period (Holland, 2006),

37R.E. Ernst, N. Youbi / Palaeogeography, Palaeoclimatology, Palaeoecology 478 (2017) 30–52
global warming at the Permian–Triassic boundary (252 million years
ago; Siberian Traps LIP), Triassic-Jurassic boundary (ca. 201 Ma; CAMP
LIP); the Toarcian stage of the Early Jurassic (ca. 183 Ma; Karoo–Ferrar
LIP), and in the initial Eocene (ca. 55Ma; secondpulse of NAIP, North At-
lantic Igneous Province LIP). The magnitude of the temperature in-
creases estimated from the oxygen isotopic ratio δ18O is 5 to 10 °C
(e.g. Pearce et al., 2008). Petersen et al. (2016) noted that a 8 °C positive
temperature excursion is associated with the Deccan LIP. Keller et al.
(2016) noted a hyperthermal warming at the onset of the main phase
of Deccan eruptions at the base of C29r and a major hyperthermal
warming just preceding the end-Cretaceous mass extinction. Saunders
(2016) argued for a 15 °C temperature increase due to the Siberian
Traps LIP at the Permo-Triassic boundary and a temperature increase
of 4–10 °C (dependingon latitude) associatedwith the PETM, correlated
with the second pulse of the NAIP. Brand et al. (2015) interpreted an
N34 °C increase associated with the end Permian extinction linked to
the positive feedback provided by release of voluminous gas hydrates
(Section 3.1.4).

3.1.3. Importance of the intrusive component
Much of the literature has emphasized the gas release produced by

the volcanic component of the LIP. However, with the discovery of hy-
drothermal vent complexes (HVCs) it was shown that gas release
from the intrusive component of LIPs potentially has an equal or even
greater climatic effect (Fig. 5). HVCs are an essential component of
LIPs (Jamtveit et al., 2004; Planke et al., 2000; Svensen et al., 2006,
2007, 2009; Neumann et al., 2011; Frieling et al., 2016). They originate
from explosive release of gases generated when thick sills (N50 m) are
emplaced into volatile-rich but low permeability sedimentary strata.
Up to 5–10 km across at the paleosurface, these vents connect to under-
lying dolerite sills at paleodepths of up to 8 km. They have been ob-
served in association with the Siberian Traps, NAIP, Karoo, and others,
and are predicted for other LIPs such as CAMP (e.g. Svensen et al., 2009).

In addition, it is recognized that major methane release can occur
through emplacement of intrusions into sedimentary basins associated
with newocean opening (Berndt et al., 2016) lending further support to
the hypothesis that rapid climate change can be triggered by magmatic
intrusions into organic-rich sedimentary basins. Additional support for
the importance of the intrusive component for the CAMP event is pro-
vided by Lindström et al. (2015a) (see also Hallam and Wignall, 2004;
Wignall and Bond, 2008) who noted that seismites (earthquake-in-
duced soft-sediment deformation) across Europe (Simms, 2007) were
concentrated in strata near the end-Triassic mass extinction interval,
which they attributed to emplacement of CAMP-related intrusions re-
leasing gases.

The most detailed calculation of the climatic effect of such HVCs is
based on those associated with the Siberian Traps LIP. The end-
Permian crisis can be attributed to the effect of Siberian Traps sills on
host evaporites (producing halocarbons) and organic-rich deposits
(producing greenhouse gases CH4 and CO2),which are then transported

Image of Fig. 6
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to the surface via HVCs and into the atmosphere. Basin-scale gas-
production-potential estimates show that metamorphism of organic
matter and petroleum by intrusions could have generated N

100,000 Gt of CO2 (e.g. Svensen et al., 2009).
The host lithologies for the intrusive component of a LIP exerts sig-

nificant controls on the environmental consequences of the LIP. Contact
metamorphism around intrusions within dolomite, evaporite, coal, or
organic-rich shale host rocks can generate large quantities of green-
house and toxic gases (CO2, CH4, SO2) (Ganino and Arndt, 2009,
2010). In some cases, such gases might not reach the surface through
HVCs—if they are trapped by overlying rocks that are not permeable
(Nabelek et al., 2015). The permeability of the overylying rocks is there-
fore a factor affecting LIP lethality from the intrusive component.

3.1.4. Gas release volume, composition, and altitude reached
With respect to gas release from LIP volcanism, three aspects are im-

portant: gas release volumes (both of the magmatic event as a whole
and from individual volcanic eruptions), gas release composition, and
gas release height (e.g. Self et al., 2014, 2015; Jones et al., 2016a). As
noted below, positive feedbacks canmagnify the environmental effects.
For instance, additional warming can result from processes such as de-
stabilization of gas hydrates and increased wildfire activity that release
further CO2 into the atmosphere.

3.1.4.1. Gas volume. One factor is the total volume of the LIP, with an ex-
pectation that larger LIPswill have a greater environmental effect, by re-
leasing a correspondingly greater volume of volatiles. However, it has
been noted byWignall (2001) that the total volume of a LIP is an imper-
fect guide to magnitude of its extinction-inducing climatic effects. Most
dramatically, the largest LIP event, the reconstructed ca. 70 Mkm3 ca.
120 Ma Ontong Java–Manihiki–Hikurangi oceanic plateau (Taylor,
2006), also termed Ontong Nui (Chandler et al., 2012) or Greater
Ontong Java (e.g. Charbonnier and Föllmi, 2017; but see original use of
this term by Ingle and Coffin, 2004, for Ontong Java and nearby ocean
basin flood basalts) is not associated with an elevated level of extinc-
tions, but is instead associated with a more modest environmental ex-
pression as an anoxia event, the Aptian-aged Selli Ocean Anoxia Event
(OAE) (Tejada et al., 2009).

The absence of a strong relationship between LIP size andmagnitude
of extinction event underlines the complexity of their relationship.
What is likely more important than the overall volume of the event is
the duration of short-term pulses extending down to the scale of single
volcanic flows. The results of Prave et al. (2016a) on geology and geo-
chronology of the Eocene–Oligocene volcanism of the Tana Basin in
Ethiopia reinforce the view that it is not the development of a LIP
alone but its rate of effusion that contributes to inducing global-scale
environmental change. As shown in Bryan et al. (2010), LIPs are associ-
atedwith the largest volcanic events in Earth history including some ar-
eally extensive (104–105 km2) basaltic lava flow fields and also silicic
ignimbrites. The gases released are dominantly H2O, followed in abun-
dance by CO2 and also SO2 and halogens (e.g. Self et al., 2014, 2015).

3.1.4.2. Gas composition. As long realized, global warming is associated
with an increase in greenhouse gases, such as CO2 and CH4. In contrast,
release of sulphur dioxide gas can lead to both greenhousewarming and
then to global cooling (when it is converted to sulphuric acid and then
to sulphate aerosols). Ozone-destroying halogens can also be released
by volcanism, and also via the intrusive component of LIPs interacting
with volatile rich sediments and being released to the atmosphere
through hydrothermal vent complexes (HVCs) (Section 3.1.3). Mercury
can be released into the atmosphere from volcanic events with deleteri-
ous effects (see Section 3.6.2).

Carbonatites are associated with many LIPs (e.g. Ernst and Bell,
2010), and Ray and Pande (1999) suggested that carbonatite-alkaline
intrusions could contribute to an extinction event by releasing high
amounts of CO2 and SO2 into the atmosphere in a very short time.
3.1.4.3. Gas release height. An important factor is the release altitude,
since gases and particles that are released into the stratosphere as aero-
sols will have a greater and longer lasting effect on climate (1–3 years)
than material reaching only the tropospheric level (1–3 weeks).
(Robock, 2000; Wignall, 2001; Robock and Oppenheimer, 2003; see
also Self et al., 2005, 2006, Bond and Grasby, 2017-this issue). Super-
eruptions are particularly important in carrying gases to the tropo-
sphere (e.g. Self and Blake, 2008; Stern et al., 2008). See Section 3.2.1
for additional discussion.

3.1.4.4. Destabilization of gas hydrates. The increases in Earth's tempera-
ture due to greenhouse gases, can destabilize methane hydrate (clath-
rate) mega-reservoirs causing massive release of the greenhouse gas
methane into oceans and the atmosphere, representing a strong posi-
tive feedback (e.g.Wignall, 2001; Jahren, 2002; Dickens, 2011) and cre-
ating a short-duration negative δ13C spike (e.g. 200 kyr) (Pálfy et al.,
2001; Retallack, 2001; Beerling and Berner, 2002; Schoene et al., 2010;
Berndt et al., 2016). The effect of methane release can be catastrophic.
As suggested by Brand et al. (2015), the end-Permian extinction in-
volved a global warming of 8 to 11 °C due to isotopically light carbon di-
oxide from the Siberian Traps LIP, which then triggered the sudden
release ofmethane from permafrost and shelf sediment hydrate leading
to a catastrophic global warming of N34 °C.

3.1.4.5. Increased wildfire activity. The increase in global temperature can
be associated with an increase in wildfire frequency and intensity. For
instance, charcoal records from Greenland, Denmark, Sweden and
Poland show increased wildfire activity (leading to further CO2 release)
in association with the CAMP event (Lindström et al., 2015b). A related
effect is noted by Grasby et al. (2011) who suggested that deposition of
coal fly-ash generated by magma-coal pyrometamorphism in the Sibe-
rian Trip LIP resulted in toxic marine conditions. This suggests that in-
creased ash deposition from wildfires would be similarly deleterious.

3.1.4.6. Additional indirect effects. There are also indirect effects such as
the interaction of a CO2 rich atmosphere with ocean to produce anoxia
(e.g. Percival et al., 2015) and together with H2S to produce acid rain
and ocean acidification (Section 3.5). On the other hand, the timing of
increased CO2 is also correlated with timing of increased silicate
weathering (see below), which provides a break on runaway green-
house conditions by fostering cooling (Section 3.2; Kump et al., 2000;
Goddéris et al., 2014; McKenzie et al., 2016).

3.2. Global cooling

Earth also goes through periods of global cooling (Fig. 4,
Supplementary Table 1) that can include global, near global or regional
glaciations which are observed in the Archean, Paleoproterozoic,
Neoproterozoic, Ordovician, Permo-Carboniferous Eocene–Oligocene,
Eocene to middle Miocene and Quaternary times (e.g. Evans et al.,
1997; Augustin and EPICA Community Members, 2004; Eyles, 2008;
Stern et al., 2008; Hoffman, 2009; Cather et al., 2009; Bradley, 2011;
Prave et al., 2016a). There is an extensive literature on global and re-
gional glaciations and a variety of causes have been considered (e.g.
Raymo, 1991; Berner, 2004 and references therein). For instance, glaci-
ations have been linked to silicate weathering during major orogenic
episodes such as the formation of the Himalayas (Cenozoic glaciation)
and the assembly of Pangea (Permo-Carboniferous glaciation). Major
land plant innovations have also been thought to be a significant factor
in causing or at least contributing to glaciations, e.g. for the Ordovician
glaciation (Lenton et al., 2012; Kidder and Worsley, 2010; Algeo et al.,
2016). It is also now recognized that LIPs can contribute to global
cooling via at least two different mechanisms: due to LIP input of SO2

into the atmosphere (and conversion to sulphate aerosols) and to the
weathering of LIP units, especially basalts.
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3.2.1. Volcanic Winter
Onemechanism for cooling the climate relates to the amount of SO2

which is a greenhouse gas and causeswarming for days toweeks. But on
a longer term it causes cooling because it forms sunlight blocking sul-
phate aerosols (e.g. Bond and Wignall, 2014). The role of sulphur
degassing as a kill mechanism is suggested by Callegaro et al. (2014)
who showed that the continental LIPs such as the CAMP and Deccan
(strongly linked to extinction events) have basalts with high sulphur
content, up to 1900 ppm while the less damaging (not associated with
mass extinction) Parana-Etendeka LIP has basalts with much lower
magmatic sulphur content (b800 ppm).

The timing can be complicated with initial cooling associated with
sulphate aerosols, following by warming as greenhouse gases build up
and then further cooling can occur if significant erosion of the flood ba-
salts then occurs, drawing down CO2, or generation of sulphate aerosols
during active LIP phases might simply act to reduce the net warming.
The situation might be different with SLIPs, which tend to emit much
lower levels of greenhouse gases than LIPs, and so the cooling effect
may be more effective for SLIPs (D. Kidder, Pers. Comm., 2016).

The effects can be even more dramatic if the gases are injected into
the stratosphere via Plinian eruptions. So called “super-eruptions”
(Self and Blake, 2008), can cause climatic cooling on a global scale
(Robock, 2004; Self, 2006; Self and Blake, 2008). This linkage led to de-
velopment of the “Volcanic Winter” concept of Rampino et al. (1988),
which focusses on short-term (1–3 years) climate cooling caused by ex-
plosive volcanism. Explosive volcanism mainly affects climate by
injecting sulphur dioxide (SO2) into the stratosphere. Volcanic ash is
also injected but this settles quickly out of the atmosphere and so causes
little cooling; in contrast, sulphur aerosols can remain suspended for a
year or more. The geographic extent of cooling resulting from volcanic
aerosols depends on eruption latitude and stratospheric winds, with
equatorial eruptions having the greatest effect (Self, 2006). Stern et al.
(2008) developed the hypothesis that explosive volcanism was at
least partly responsible for Neoproterozoic climate change, synopsized
as the “Volcanic Winter to Snowball Earth” (VW2SE) hypothesis.

3.2.2. Weathering and CO2 drawdown
The other dramatic mechanism for driving cooling on the Earth's

surface is related to silicate weathering. On the broadest scale, the ex-
tent of supercontinent assembly is linked to broad peaks and valleys
in atmospheric CO2 abundance lasting 10s of Myr (Goddéris et al.,
2014). However, some dramatic changes in the CO2 level, particularly
those that are of short duration (e.g. on the scale of a few million
years) canbe linked to theweathering of LIPs. Goddéris et al. (2003) dis-
cuss the following sequence of events: at the beginning of the LIP event,
atmospheric CO2 first rises due to degassing of hot basaltic lavas. Imme-
diate global warming is rapidly counteracted by the increasing con-
sumption of atmospheric CO2 due to continental silicate weathering
(including the weathering of flood-basalt material). Note that
weathering of continental silicates is enhanced under awarmer and (as-
sumed) wetter climate (at lower latitudes), and basaltic volcanic rocks
weather about five to ten times faster than granitic rocks (Dessert
et al., 2003). Chemical weathering rates double when temperature
goes up by 10 °C (Ruddiman, 2008; see also Walker et al., 1981).

CO2 drawdown due to weathering of LIPs leads to idea that erosion
of flood basalts can initiate global cool down and even glaciations.
Based on weathering laws for basaltic lithologies (Dessert et al., 2003)
and on climaticmodel results, weathering of a 6Mkm2 basaltic province
located within the equatorial region (where weathering and consump-
tion of CO2 are optimal) could be sufficient to trigger a snowball glacia-
tion (Goddéris et al., 2003). Note that the cooling effect introduced by
chemical weathering of new LIP basalts might be amplified during
warm-climate intervals, not only by the fact that the climate is warmer,
but also by the expansion of warm climates to higher paleolatitudes.
This would mean that LIP basalts that erupted at mid-latitudes might
have a much greater contribution to cooling the climate than they
would during an Icehouse climate. Furthermore, the poles tend to
moisten considerably at such times, so their weathering potential
might increase too, at least in summer (D. Kidder, Pers. Comm., 2016).
For instance, there was an abrupt increase in chemical weathering in
the Early Triassic potentially linked with the Siberian Traps LIP which
was at mid-high latitudes at this time (Sheldon, 2006; Algeo and
Twitchett, 2010). So polar regions which warm in Greenhouse times
(with summer temperatures of around 15 °C) and more so in Hothouse
times can become moist and potentially have enhanced weathering
(Kidder and Worsley, 2004, 2010; Taylor and Ryberg, 2007, the latter
noting tree growth at polar latitudes).

The sedimentary record should reflect certain trace element and iso-
topic abundances if LIPs are being massively weathered in contrast to
average continental crust. For example, erosion of LIPs (and particularly
their flood basalts) should produce geochemical/isotopic characteristics
which are typical of a dominantly mafic provenance, for example
through the input of radiogenic Nd, and unradiogenic Sr and Os (e.g.
Mills et al., 2014; Cox et al., 2016). An example is the mafic Nd and Sr
isotopic shifts in sediments associated with the timing of
Neoproterozoic LIP events (e.g. Cox et al., 2016).

3.2.3. CO2 drawdown due to silicic magmatism
The effect of silicic LIPs on cooling can be dramatic. Cather et al.

(2009) demonstrated that during middle Eocene to middle Miocene
time, the development of the Cenozoic Icehouse was coincident with a
prolonged episode of explosive silicic volcanism, the ignimbrite flare-
up of southwestern North America. They present geochronologic and
biogeochemical data suggesting that, prior to the establishment of full
glacial conditions with attendant increased eolian dust emission and
oceanic upwelling, iron fertilization by great volumes of silicic volcanic
ashwas an effective climatic forcingmechanism that helped to establish
the Cenozoic Icehouse. They further conclude that most Phanerozoic
cool-climate episodeswere coevalwithmajor explosive volcanism in si-
licic LIPs, suggesting a common link between these phenomena, which
they term the Icehouse-SLIP hypothesis (Cather et al., 2009).

3.2.4. End of ice ages
Global weathering leads to ice age and albedo increase because of

snow/ice cover which reflects more energy back into space. This
means that volcanism might be key to taking the planet out of a global
ice age. However, a background low volcanic flux can also build up
CO2 to a tipping point, and so a LIP event is not required to end an ice
age. As shown below the record is mixed on this point. The ca.
650–630 Ma end of the Sturtian glaciation and transition to the
Marinoan glaciation is not associated with any LIP; the timing is linked
with a peak time of subduction related magmatism in the Arabian-
Nubian shield and east African orogen (Stern et al., 2008). However,
the termination of two Paleoproterozoic glaciations are linked with
LIPs (for more details see Section 3.2.5.1). The 2426 ± 3 Ma Ongeluk
LIP occurs at the end of the correlated Ramsey Lake (Huronian Basin)
and Makganyene (Transvaal Basin) glaciations and is considered to be
the cause of the end of the glaciation (Gumsley et al., 2017). Similarly,
the 2250–2240 Ma Hekpoort LIP (Kaapvaal craton) and
2215–2210 Ma Nipissing-Ungava LIP (Superior craton) approximately
mark the end of the Rietfontein glaciation (Gumsley et al., 2017).

3.2.5. LIPs and glaciations
In this section the history of glaciations in the Proterozoic and Phan-

erozoic is comparedwith the LIP record, and both temporal correlations
and non-correlations are noted.

3.2.5.1. Paleoproterozoic glaciations. Three pulses of glaciation observed
in the Huronian basin (H) on the southern edge of the Superior craton
(e.g. Fig. 6; Young, 2013; Melezhik et al., 2013) can now be correlated
with glaciations in the Transvaal basin (T) of Kaapvaal craton
(Gumsley et al., 2017): Ramsey Lake (H)—Makganyene (T), Bruce
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(H)—Duitschland (T) and Gowganda (H)—Rooihoogte (T) as well as a
the younger Rietfontein (T). Two of these glaciations end with LIP
events. The Ramsey Lake-Makganyene is followed by the 2426 ±
3 Ma Ongeluk LIP, and the Rietfontein glaciation is followed by the ca.
2250–2240 Ma Hekpoort and 2215 Ungava-Nipissing LIPs. There can
also be a linkwith the start of a glaciation. The oldest glaciation (Ramsey
Lake-Makganyene) is preceded by (and perhaps influenced by) various
2.5–2.45 Ga units globally (Melezhik et al., 2013; Gumsley et al., 2017):
the 2.51 Mistassini and 2.48–2.45 Ga Matachewan LIPs of the Superior
craton, and in adjacent parts of Karelia-Kola (Ernst and Bleeker, 2010),
and also the Woongara-Weeli Wolli LIP of the Pilbara craton (Ernst,
2014).

3.2.5.2. Neoproterozoic glaciations. The Neoproterozoic is another impor-
tant time for global glaciations, Sturtian, Marinoan and Gaskiers which
can be compared with the LIP record (Fig. 6). The Sturtian glaciation
(ca. 717–660Ma) is immediately preceded by the 725–715Ma Franklin
LIP of northern Canada (Macdonald et al., 2010) and coeval Irkutsk LIP
in formerly attached southern Siberia (Fig. 6; Ernst and Bleeker, 2010;
Ernst et al., 2016a). Cox et al. (2016) suggested a link based on the
rapid CO2 drawdown which they linked to both increased erosion in a
tropical latitude and increased contribution of P to the oceans increasing
biologic productivity and thereby further increasing weathering draw-
down. There is no ca. 650–635 Ma LIP event currently recognized be-
tween the end of the Sturtian glaciation (at 660 Ma) or associated
with theMarinoan glaciation (ca. 640–635Ma). The ca. 580MaGaskiers
glaciation is similar to a number of LIP events that belong to a ca.
590–570 Ma pulse of the 615–555 Ma multi-pulsed Central Iapetus
Magmatic Province (CIMP) (e.g. Ernst and Bleeker, 2010). This pulse in-
cludes the Grenville dykes of eastern Laurentia (at ca. 590 Ma), the
Volyn flood basalts of Baltica at ca. 570 Ma (Shumlyanskyy et al.,
2016a), and the ca. 580 Ma Ouarzazate intraplate magmatism of West
Africa (Youbi et al., 2016; Ikenne et al., 2016).

3.2.5.3. Phanerozoic glaciations. The Hirnantian glaciation (ca. 440 Ma)
can be broadly associated with postulated LIP magmatism that includes
the ca. 440 Ma Suordakh dolerite event in eastern Siberia (Khudoley
et al., 2013), the Ongnyeobong Formation volcanics in South Korea
(Cho et al., 2014), flood basalts of Sierra del Tigre in Argentina
(Retallack, 2015) and other magmatic units elsewhere (Millward and
Evans, 2003; Millward, 2004; Buggisch et al., 2010; Huff et al., 2010;
Kravchinsky, 2012; Perrier et al., 2012; Retallack, 2015). However, the
scale and precise dating of these intraplate events are not currently
well constrained. Permo-Carboniferous glaciations (300 to 260 Ma)
are broadly linked with the widespread intraplate magmatism of the
European North West African Magmatic Province (EUNWA or
EUNWAMP, and its initiation as the 300 Ma Skagerrak LIP, and also
the 260 Ma Emeishan LIP.

3.2.5.4. Complexities in the relationships. As shown above there are LIPs
linked with the onset of glaciation, such as the 720 Ma Franklin-
Irkutsk LIP with the start of the Sturtian glaciation and the ca. 580 Ma
pulse of CIMP associated with the Gaskiers, and perhaps the
2.5–2.45 Ga LIPs associated with the Ramsey Lake-Makganyene glacia-
tion. In such cases, either of the above-mentioned cooling mechanisms
(sulphate aerosols and weathering of basalts) could be responsible for
the cooling. In addition, there are examples of LIPs associated with the
end of glaciations, such as younger phases of the ca. 580 Ma CIMP
pulse with the Gaskiers glaciation and the 2426 Ma Ongeluk LIP with
the Ramsey Lake-Makganyene glaciation and the ca. 2250–2240 Ma
Hekpoort and 2215 Ungava-Nipissing LIPs with the end of the
Rietfontein glaciation, in these cases representing global warming
events that helped end these glaciations.

However, some LIPs that experienced extensive weathering did not
result in global cooling. For instance, as demonstrated by Schaller et al.
(2012) weathering of CAMP reduced atmospheric carbon dioxide
significantly, but not to the point of stimulating glaciation. Also, some
of the glaciations did not begin with a LIP. It has been observed that
there is enhanced LIP activity at times of Precambrian supercontinent
breakup (Ernst and Bleeker, 2010), and while there is a glaciation link
with both the breakup of the Archean supercontinent (in the early Pro-
terozoic; Section 3.2.5.1) and the breakup of Rodinia (ca. 725 Ma;
Section 3.2.5.1), there is no glaciation associated with breakup of
Nuna-Colombia (ca. 1400–1200 Ma).

Interestingly the Permo-Carboniferous glaciations are associated
with a time of supercontinent assembly and presumably linked to en-
hanced silicate weathering during orogenesis. With these complexities,
it can be inferred that there are important controls on global cooling be-
sides LIPs, such as weathering of orogens and bioevolutionary changes
such as increased Corg burial by land plants (as discussed above). Further
research is necessary to properly assess the role of LIPs in some glacial
events.

3.3. Oceanic anoxia events

3.3.1. Characteristics
Periods of oceanic environmental crisis are identified by black shales

that are indicative of low, or oxygen-absent, deep-ocean conditions
termed Oceanic Anoxia Events (OAEs) (e.g. Kerr, 1998, 2005; Meyer
and Kump, 2008; Jenkyns, 2010; Du Vivier et al., 2014; Brazier et al.,
2015; Percival et al., 2015, 2016; Chi Fru et al., 2016). A wide variety
of causes have been attributed to the formation of OAEs such as en-
hanced preservation under restricted and poorly oxygenated condi-
tions, or increased organic productivity in the oceans using up
available oxygen. Kerr (1998, 2005) has emphasized the role of oceanic
LIPs in causing such anoxia events, but as shown in Supplementary
Table 1 and discussed below, some continental LIPs are also associated
with and contributed to anoxic events.

3.3.2. Link with LIPs
Black shales indicative of global OAEs occur throughout the Phaner-

ozoic (Jenkyns, 2010) and each of the major ones can be temporally
linked to a LIP (Supplementary Table 1; see also Pearce et al., 2008;
Percival et al., 2016). The Cretaceous wasmarked by a number of global
OAEs, black-shale deposition, and δ13C excursions correlated with
oceanic-plateau formation, particularly around the Cenomanian–
Turonian boundary (93.5 Ma) and during the Aptian (124–112 Ma)
(Fig. 1). In addition, as noted by Kerr (2005), important Kimmeridgian
to Tithonian (155–146Ma)oil source rocks correlatewith the formation
of the Sorachi plateau in the western Pacific (Kimura et al., 1994) and
would also be similar in age with the poorly-dated Shatsky–Tamu LIP
(Sager et al., 2013; Heydolph et al., 2014; Ernst, 2014). Furthermore,
the formation of Toarcian (187–178 Ma) black shales corresponds
with the eruption of the Karoo–Ferrar LIP. The link between black shales
and LIPs has become important in the context that black shales are a key
source rock for hydrocarbons (e.g. Kerr, 2005; Ernst, 2014).

Those anoxic events with significant hydrogen sulphide are termed
euxinic, and occur in the end-Permian, Late Devonian, and
Cenomanian–Turonian extinctions (e.g. Kump et al., 2005) which are
associated with the ca. 370 Ma Yakutsk-Vilyui and Kola Dnieper,
252 Ma Siberian Traps LIP, and ca. 90 Ma Caribbean-Colombian, HALIP,
and Madagascar LIPs, respectively (see Supplementary Table 1).

3.3.3. Details of the Bonarelli (OAE2) event
There are timeswhenmultiple independent LIPs are occurring at the

same time (Ernst and Buchan, 2002). One such time is at ca. 90–95 Ma,
featuring theMadagascar, Caribbean-Colombian, High Arctic LIP (HALIP
(younger pulse), which is also correlated with the short duration OAE2
event. Within this short duration event (0.71 ± 0.17 Myr at 94 Ma
(Eldrett et al., 2015) there are signatures which can potentially identify
the superimposed or sequential influence of these different LIPs. Eldrett
et al. (2014) note the presence of trace metals (Cr, Sc, Cu and Co)
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suggesting the influence of a LIP, that they suspect to be HALIP and
which occurs in the middle of the anoxic event, and is therefore not
the initial cause of this OAE2 event. However, the osmium isotope ex-
cursion by Turgeon and Creaser (2008) corresponds to the onset of
the anoxic event and has been linked with the Caribbean Colombian
LIP. In addition, a lead isotope study has linked OAE2 to the
Caribbean-Colombian and Madagascar LIPs (Kuroda et al., 2007).

3.3.4. Anoxia events in the Precambrian
The temporal link between LIPs and global anoxia events is best

characterized in the Phanerozoic, but the robustness of that link indi-
cates that the Proterozoic and even late Archean black shale record
should similarly be linked to LIPs (and in particular, to oceanic plateaus),
but this prediction remains to be systematically examined. As noted by
Kerr (2005) there seems to be a temporal association, throughout a sig-
nificant proportion of geological history, between periods of global oce-
anic environmental crises, black-shale formation, and oceanic-plateau
formation (Kerr, 2005). Unfortunately, in the Precambrian the oceanic
plateau record is poorly preserved (Dilek and Ernst, 2008). Condie
et al. (2001) suggested that there was a maxima in black shale abun-
dance at 2.0–1.7 Ga, and also less significant peaks in the Late
Neoproterozoic (800–600 Ma) and in the Late Archean (2.7–2.5 Ga).
Each of these timings broadly correlates with times of enhanced LIP ac-
tivity (Ernst, 2014). However, to be confident about a specific genetic
link requires more precise dating for both the black shale events and
the provisionally-correlated LIP events. One clear Precambrian correla-
tion is between ca. 1880 Ma black shales (e.g. Bekker et al., 2010,
2014) with coeval LIPs such as the Circum-Superior LIP (Fig. 1) and
others globally of similar age (e.g. Minifie et al., 2013; Ernst, 2014).

3.4. Ocean acidification—calcification crisis

High CO2 and SO2 in the atmosphere can lead to acid rain in the form
of carbonic acid and sulphuric acid, and these gases can also transfer to
the oceans and cause oceanic acidificationwith a loss of calcifiedmarine
biota (e.g. Kerr, 2005; Kiessling and Simpson, 2011; Hönisch et al.,
2012). As shown by modeling, volcanic sulphur and CO2 released by
the Siberian Traps LIP causedwidespread acid rain that directly contrib-
uted to the end-Permian mass extinction (Black et al., 2013); this same
model also emphasized the importance of halogens and global ozone
depletion). Clarkson et al. (2015) considers the ocean acidification asso-
ciatedwith the endPermian extinctionwhich is linkedwith the Siberian
Traps LIP. Similarly, the fossil record at the end of the Triassic showing
major loss of calcifying organisms is evidence for ocean acidification,
linked to the CAMP event (Lindström et al., 2015b). The ocean acidifica-
tion at the Cretaceous-Tertiary boundary linked to the Deccan LIP has
been also documented in Punekar et al. (2014, 2016) and Font et al.
(2014).

3.5. Sea level changes

There are major sea level changes (Haq and Schutter, 2008; Haq
et al., 1987; Haq, 2014) and separating LIP induced sea level changes
from those occurring due to broader climate changes remains a chal-
lenge. The controls on sea level changes are complex and occur over a
range of time scales (e.g. Miller et al., 2005; Hannisdal and Peters,
2011; Ernst, 2014) with the broadest changes linked to the cycle of
ocean opening and closing, and the short term third order excursions
being more specifically linkable with LIPs. Such more rapid changes in
sea level have a greater effect on the environment and its biota.

The arrival of a mantle plume (causing a LIP) beneath oceanic litho-
sphere should result in a rise in eustatic sea level because of isostatic up-
lift and displacement of water by the oceanic LIP itself and thermal
expansion of seawater (e.g. Kerr, 1998, 2014; Lithgow-Bertelloni and
Silver, 1998; Condie et al., 2001; Miller et al., 2005). Emplacement of
oceanic plateaus produces moderately rapid sea-level rises (60 m/Ma),
but then sea level slowly falls as a result of the decay of the thermal
mantle anomaly (10 m/Ma) (Miller et al., 2005). On the other hand, a
continental LIP will contribute to local relative sea level fall owing to re-
gional (up to about 2000 kmacross) domal uplift above the plume, but if
the LIP is associated with subsequent continental rifting and breakup
then the formation of extensive new buoyant oceanic crust and litho-
sphere causes widespread flooding (and sedimentation) of shallow
platform environments. Iron formations can also be linked, wherein
oceanic LIP magmatism provides the dissolved iron that precipitates in
these new shallow platform environments (Section 3.8.3; Isley and
Abbott, 1999; Abbott and Isley, 2001; Bekker et al., 2010, 2014; Ernst
and Jowitt, 2013).

Modeling of uplift associated with continental LIPs (e.g. Campbell,
2005) indicates that changes in topography of a km or more can occur
over a fewmillion years and extend over a scale of up to 1000 km radius
about the plume centre (and cause local regression). Oceanic LIPs can
have a topographic uplift as well as build-up of an volcanic construct,
but are mostly subaqueous, and therefore their topographic effect will
be expressed in global sea level rise, but on a short duration time scale
of a fewmillion years. Emplacement of the Ontong Java oceanic plateau
would have caused an estimated sea-level rise of at least 10m based on
a calculation assuming Airy isostasy (Schubert and Sandwell, 1989;
Coffin and Eldholm, 1994). A similar calculation also incorporating the
nearby ocean basin basalts and formerly connected Manihiki and
Hikurangi plateauswould yield at least 15m of sea level rise. A wide re-
gion of western Europe was affected by rapid sea-level fall and subse-
quent rise associated with the Triassic-Jurassic boundary (Hesselbo
et al., 2004), and therefore should be linked to the CAMP LIP (regression
due to uplift?) and the associated opening of the central Atlantic Ocean
(transgression?).

An additionalminor factor is the effect of globalwarming on increas-
ing seawater volume (Kerr, 2014). A rough order of magnitude of that
effect is given as follows: Given a volumetric temperature coefficient
of 0.000088 (1/°C) for water at 10 °C), http://www.
engineeringtoolbox.com/volumetric-temperature-expansion-d_315.
html using 0.000088 (1/°C) and a temperature change from 10° to 15 °C
yields a volume increase of 0.044%. Given the area of world's oceans =
360Mkm2, and volume of world's oceans = 1400 Mkm3 then the aver-
age water depth increase associated with this 5° average temperature
increase is = 0.044% ∗ (1400,000,000/360,000,000) = 0.04%
∗ 3.888 km = 1.7 m. A similar calculation using 0.000207 (1/°C) for 20
°C and a temperature change of 20 °C to 25 °C yields a water depth in-
crease of 4 m. On the other hand, cooling (potentially linked to LIPs;
Section 3.2.4) and increased storage of water in polar ice can yield dra-
matic sea level drops. For instance, a sea level drop of nearly 100 mwas
associated with the Hirnantian extinction and associated glaciation
(Harper et al., 2014; Brenchley et al., 2006).

3.6. Effect of toxic metals

3.6.1. Mercury
Toxic metals such as Hg, Os, Fe, Mo, Pb, Mn and As released by LIP

events can represent a direct kill mechanism (e.g. Sanei et al., 2012;
Vandenbroucke et al., 2015; Percival et al., 2016). Mercury is a particu-
larly significant toxic metal, in part because it is produced by volcanism
and in its metal state it is a volatile and so can be globally distributed
with a residence time of approximately 1–2 years before oxidizing and
binding to clays and organics (e.g. Font et al., 2016). Thus, volcanic activ-
itymay be recorded as enrichments in sedimentarymercury (measured
as Hg/TOC) (Sanei et al., 2012, and references therein). Elevatedmercu-
ry levels have been recognized in associationwith a least five LIP events
(Fig. 4) including the Siberian Traps (e.g. Sanei et al., 2012; Grasby et al.,
2016a), CAMP (Percival et al., 2015; Lindström et al., 2015b; Thibodeau
et al., 2016), Karoo-Ferrar (Toarcian) (Percival et al., 2015), and Deccan
(Adatte et al., 2015; Keller et al., 2015; Adatte et al., 2016; Font et al.,
2016). The mercury record for the PETM associated with NAIP LIP is

http://www.engineeringtoolbox.com/volumetric-temperature-expansion-d_315.html
http://www.engineeringtoolbox.com/volumetric-temperature-expansion-d_315.html
http://www.engineeringtoolbox.com/volumetric-temperature-expansion-d_315.html
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discussed by Khozyemet al. (2016). Jones et al. (2016c) revealed several
major mercury peaks that indicate LIP volcanic contributions both be-
fore, at and after the Ordovician mass extinction, even though no LIP
is known to date (but is speculated upon, Section 3.2.5.3). All these ob-
servations of LIPs as a source of environmental mercury are also consis-
tent with mercury deposits spatially and age-wise correlated with the
Siberian and Tarim LIP events (Borisenko et al., 2006). Most recently a
mercury anomaly is matched with the timing of the largest LIP, Ontong
Java oceanic plateau and reconstructed portions (Charbonnier and
Föllmi, 2017).

3.6.2. Teratological (malformed) assemblages of fossil plankton
Metal toxicity represents an important contributor to environmental

crises that can represent a kill mechanism associated with extinction
events. One proxy for monitoring the effects is teratological (mal-
formed) assemblages of fossil plankton (Munnecke et al., 2012;
Vandenbroucke et al., 2015) or aberrant, i.e. abnormal, and thus proba-
bly non-viable pollen and spores (Lindström et al., 2015b). These au-
thors suggest that the malformed effect is a harbinger of extinction
events that these are an initial response to metal toxicity, and is specif-
ically linked to the CAMP event. However, abnormal fossilmorphologies
can be found inmost fossil assemblages at any given time and they tend
to increasewith increasing environmental stress thatmay ormay not be
associated with metal toxicity (Keller, Pers. Comm. 2016). In the study
of Vandenbroucke et al. (2015), the two events discussed, the end-
Ordovician Hirnantian event and the late Silurian (Pridoli) event are
not associated with a known LIP (but see discussion in Section 2.1). In-
terestingly, the metal enrichment (Fe, Mo, Pb, Mn, and As) associated
with the late Silurian (Pridoli) extinction event (Vandenbroucke et al.,
2015) are not metals that are normally preferentially enriched in LIPs,
but are metals associated with sulphide mineralization.

3.7. Depletion in bio-essential elements and nutrients

Another proposed kill mechanism is the depletion of bioessential el-
ements such as Se,Mo, Ce, Cd, Tl, and Pwhich can affect bioproductivity,
carbon burial and oxygen release (Large et al., 2015). In particular, se-
vere depletions in selenium and such trace elements at the end-
Ordovician, end-Devonian and end-Triassic periods, correlate with
those mass extinctions. The end-Triassic is correlated with the CAMP
LIP event, the end-Devonian with a pulse of the Kola-Dnieper, and/or
Yakutsk-Vilyui LIPs (Figs. 1, 2), and as mentioned above, the end-
Ordovician extinction has indications ofmaficmagmatism involvement.
Long et al. (2016) also suggest decrease in such bio-essential trace ele-
ments during global anoxia events, which as indicated above
(Section 3.3) can be linked to LIPs. Grasby et al. (2016b) inferred a “nu-
trient gap” for the Siberian Traps LIP associated with the Permian-
Triassic extinction as monitored by nitrogen stable isotopes.

3.8. Oxygenation of the atmosphere and ocean

Another important dramatic environmental change in Earth history
is the oxygenation of the atmosphere. Geochemical and isotopic data
suggest that oxygenation of the Earth's atmosphere occurred in two
broad steps (Fig. 6), in the Paleoproterozoic, affecting the shallow
ocean and in the Neoproterozoic, also affecting the deep ocean, and is
linked with major glaciations (e.g. Frei et al., 2009; Lyons et al., 2014;
Gumsley et al., 2017; see Section 3.2.4 for the link of LIPs and
glaciations).

3.8.1. Great oxygenation event
Previous studies have constrained the Paleoproterozoic Great Oxida-

tion Event (GOE) to between 2.45 and 2.2 Ga. The paper by Luo et al.
(2016) identify this transition in a continuous sedimentary sequence
in the Transvaal Supergroup, South Africa where the sulphur isotopic
signal in diagenetic pyrite changes frommass-independent to becoming
mass-dependent. These data date the GOE to 2.33 Ga and suggest that
oxygenation occurred rapidly, over 1 to 10 Myr. A plausible mechanism
for linking LIPs and oxygenation is that the LIP event leads to a burst of
biological productivity that releases oxygen to the atmosphere. The
timing of this specific transition does not match with any known
major LIP, but does overlap with the newly recognized ca.
2.33–2.31 Ga Kuito-Taivalkovski intraplate event in Karelia, which has
unknown overall extent (Ernst, 2014; Salminen et al., 2014; Stepanova
et al., 2015). A link with the older 2.5–2.45 Ga LIPs is also possible
(Gumsley et al., 2017; Ciborowski and Kerr, 2016 see Section 3.2.5.1).

The period of oxygenation continued until the end of the Lomagundi
carbon isotope excursion at ~2060Ma (Ma) (Fig. 6). The termination of
the GOE would be then linked with 2.06 Ga LIPs (Bushveld LIP of the
Kaapvaal craton and the Kevitsa-Kuetsjärvi-Umba LIP of Karelia (Ernst,
2014).

A different angle for assessing the link between LIPs and the GOE is
proposed in the study by Konhauser et al. (2009) which discusses the
Paleoproterozoic oxidation event(s) and specifically the GOE as
resulting from a “methanogen famine” caused by a depletion of oceanic
nickel, which is essential for methanogens. This decrease in nickel avail-
ability is linked to a dramatic drop in the frequency of komatiite-bearing
LIPs after ca. 2.7 Ga (associated with Archean-Proterozoic transition).
This decrease in komatiites and their Ni supply to sea-water would
lead to a die-off of methanogens (which produce methane). However,
the apparent briefness of the GOE event at ca. 2.33 Ga is less consistent
with such a broad mechanism occurring several hundred Myr earlier.

3.8.2. Neoproterozoic oxidation event—role of phosphorous enrichment by
LIPs

Low-latitudeweathering of Neoproterozoic LIPs (such as the 720Ma
Franklin and Irkutsk LIPs; Ernst et al., 2016a) which have substantial P
content (740 ppm), resulting in a high flux of bioavailable P (1–5
× 109 mol/yr may have been sustained for millions of years) to the
ocean which increased primary productivity (Horton, 2015). This
would trigger oxidation of the ocean-atmosphere system and thus con-
tribute to the Neoproterozoic oxidation event (Horton, 2015; Cox et al.,
2016). Additional Neoproterozoic oxygenation may also have occurred
after the 720 Ma pulse. For instance, Canfield et al. (2007) suggested
that a significant amount of the deep ocean oxygenation took place in
association with the Gaskiers glaciation at about 580 Ma (which can
be linked with LIPs (Section 3.2.2)).

3.8.3. Link with iron formations
Iron formations can reflect both oxygenation pulses (leading to Fe

reduction and precipitation) but also Fe availability (due to LIPs) and
favourable shelf settings for deposition (e.g. Bekker et al., 2010, 2014
and references therein) and the latter is generally more important. Spe-
cifically, there is a strong correlation between the timing of iron forma-
tions with LIPs (e.g. Isley and Abbott, 1999). It is inferred that LIPs
produce Fe- and Si-rich hydrothermal plumes that rise and spread and
precipitate on clastic-starved shelf settings. Such shelf settings are
more common during breakup events (which are also linked with
LIPs). As noted above oxygenation occurred in the late Paleoproterozoic
and in the Neoproterozoic. As proxied by Cr isotopes, transient rise in
oxygen contributed to the burst of banded iron formations
2.7–2.45 Ga which was prior to the GOE. However, there is also a LIP
link in the Paleoproterozoic. For instance, the ca. 2426Ma Ongeluk For-
mation is overlain by banded iron and manganese deposits of the
Hotazel Formation (Gumsley et al., 2017).

However, the widespread iron formation at 1880Mawas associated
with a drop in oxygen as indicated by Cr isotopes (Frei et al., 2009). This
apparent conundrum of an iron formation during decreased oxygen is
resolved through recognition ofwidespreadmafic-ultramaficmagmatic
(LIP) events throughout the world at this time (e.g. Minifie et al., 2013;
Ernst, 2014) and their effect on seawater composition (Rasmussen et al.,
2015). Specifically, enhanced submarine volcanism released large
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volumes of ferrous iron that overwhelmed prevailing oceanic sulphur
and oxygen conditions, and was precipitated in shelf settings. Further-
more, Rasmussen et al. (2015) note that the end of this period of intense
iron formation also correlates with the end of this period of enhanced
LIP magmatism.

Another factor to consider is that there aremany LIP events (averag-
ing once every 20–30 Myr, Section 1.1), but most are not linked with
iron formation, indicating other controlling factors such as oceanic com-
position (T. Lyons, 2016, Pers. Comm.). For instance, the Fe-flux from an
oceanic plateau would needs to overwhelms the oceanic oxidation
state, so that iron can be transported and deposited distally yielding
iron formations (cf. Bekker et al., 2010). However, the presence of dis-
solved sulphate ion leads to the precipitation of iron sulphide and there-
fore removes Fe from the fluid and significantly reducing the
contribution of Fe to the open ocean (Kump and Seyfried, 2005). So, if
the ocean is sulphate-rich then even a large oceanic LIP event may not
result in iron formation. This and other potential factors affecting the
link between LIPs and iron formations need to be identified and
modelled.

3.8.4. Cambrian explosion: burst of life at 541 Ma
The burst of life at ca. 541 Ma, the beginning of the Cambrian has

been explained by awide variety of causes including a potential step-
wise burst of oxygenation (e.g. Smith and Harper, 2013; Sperling
et al., 2015; Fox, 2016). Here we note that this timing is also correlat-
ed with an unusual burst of LIP pulses, collectively termed the
Central Iapetus Magmatic Province (CIMP). The CIMP event is a
multi-pulsed LIP event that is widespread in eastern Laurentia,
Baltica and West Africa, and probably on other blocks also (Ernst
and Bleeker, 2010; Youbi et al., 2016). The pulses of the CIMP event
were at ca. 615, 590, 560 and 550 Ma, and probably represent more
than one LIP. The environmental effects of these pulses have not
been well characterized, but a broad age match with a burst of life
at the beginning of the Cambrian is very suggestive of the genetic
involvement of the CIMP.

4. LIPs as proxies for natural Precambrian boundaries

4.1. Lessons from the Phanerozoic record

As presented above, LIPs typically have a dramatic effect on the cli-
mate/environment and are associated with several extinction events
in the Phanerozoic. Proposed kill mechanisms include global warming,
oceanic anoxia, oceanic acidification, glaciations, and toxic metal
input. Given the dramatic climatic/environmental impact of Phanerozo-
ic LIP events, it is expected that Proterozoic LIPs exerted a similar major
influence on the Proterozoic environment which can be monitored by
excursions in the compositions in sedimentary rocks of stable isotopes
such as Sr, C, O, S, Os, Mo, Cr, and through other parameters such as
Hg/TOC.

4.2. Proterozoic LIP events, their links with environmental crises and utility
as natural time markers

The LIP record is best understood in the Phanerozoic. However, with
U-Pb dating efforts over the past 20–30 years, and particularly with a
2009–2016 industry-supported project focused on U-Pb dating of re-
gional dolerite dyke swarms around the world (part of LIP plumbing
systems) (e.g. Ernst et al., 2013) our understanding of the global Prote-
rozoic LIP record has significantly improved (Fig. 1; for more details see
Table 1.2 and Fig. 1.6 in Ernst, 2014).

LIPs can be useful as proxies for chronostratigraphically-defined Pro-
terozoic and late Archean boundaries. Publications such as Okulitch
(1987, 2002) and Bleeker (2004a, 2004b) as well as the comprehensive
review by Van Kranendonk et al. (2012) have argued for a revised Pre-
cambrian time scale based on natural chronostratigraphic boundaries
(in some cases correlatedwith LIPs) to replace the current chronometric
scale (e.g. Ogg et al., 2016) that uses numbers rounded mainly to the
nearest 100 Myr). In particular, Okulitch (1987, 2002) used LIP events
for three Precambrian boundaries in an earlier time-scale used in
Canada: For the boundary between the Meso-Helikian and Neo-
Helikian in theMesoproterozoic Okulitch (1987, 2002) chose the largest
LIP event of northern Canada, theMackenzie LIP, which extends over an
area of 3 Mkm2, and used the age of 1269 ± 2 Ma from LeCheminant
and Heaman (1989). In the Neoproterozoic, for the boundary between
the Paleo-Hadrynian–Neo-Hadrynian, Okulitch (1987, 2002) used the
second largest LIP event of northern Canada, the Franklin LIP event,
which is now recognized to be even largerwith its extension into south-
ern Siberia as the Irkutsk LIP (Ernst et al., 2016a). Okulitch (2002) used
the 723± 3Ma age of Heaman et al. (1990) for the boundary. Note that
current dating indicates two pulses of the Franklin (+Irkutsk) LIP, one
corresponding to the original ca. 723Ma age and the other correspond-
ing to a ca. 716 Ma age (Macdonald et al., 2010; see also Heaman et al.,
1992). Finally, for the Archean–Proterozoic boundary, he used 2500 ±
10 Ma from Heaman (1994), and this citation concerns a U-Pb age on
two LIP events in southern Superior craton—Matachewan andMistassi-
ni. So Okulitch (2002) is defining the Archean–Proterozoic boundary on
the basis of theMatachewan andMistassini LIPs. It should be noted that
based on our current understanding, the Matachewan LIP is younger
than 2480 Ma and the Mistassini LIP is slightly older than 2500 Ma
(Hamilton, 2009).

Ideally boundaries should be placed at key events or transitions in
the stratigraphic record (to establish ‘golden spikes’) (e.g. Gradstein
et al., 2012a, 2012b; Van Kranendonk et al., 2012; Ogg et al., 2016).
Given their potential to cause severe global environmental impacts,
LIPs can represent proxies for such “golden spike” boundaries. As a con-
tribution toward the identification of appropriate natural boundaries,
the current Proterozoic LIP record (Ernst, 2014) is canvassed for candi-
dates to mark such boundaries.

LIPs at 2500–2450, 2100, 2060, 1880, 1790–1750, 1525–1500, 1460,
1380, 1270, 1110, 825, 720, 615–560, 510Ma (Table 1) are of particular
significance both for their scale and extent. While, as noted in
Section 3.1.4, that size is not necessarily the only factor in their potential
impact on the climate, it remains an important first-order parameter. In
Table 1 we compare this LIP record with the most recent version of the
International Chronostratigraphic Chart by the International Commis-
sion on Stratigraphy (Ogg et al., 2016).
4.3. LIPs and Precambrian time-scales

Here we look at the current official Precambrian time scale
where the boundaries are given by numbers rounded to the nearest
100 Myr (and nearest 50 Myr in the case of Rhyacian-Orosirian
boundary) (Table 1) and a modified timescale (Table 2) in which
more natural boundaries are used (Van Kranendonk et al., 2012;
Ogg et al., 2016). In both tables we identify LIP events that would
roughly match the boundaries. It should be noted that this is very
provisional assessment of potential links—since the Precambrian
LIP record is still poorly known, especially in terms of the overall
extent of individual LIP events and their precise dating, and
also in terms of the broadly correlated environmental effects
(measured through sedimentary isotopic and compositional
variations through time that reflect seawater and atmospheric
characteristics).
5. Controls on the environmental impact of a LIP

There are several thematic aspects which further address the com-
plexity of the relationship between LIPs and their environmental
impact.



Table 1
Precambrian Period boundaries compared with selected LIPsa.

Era
Precambrian
Period

LIP event suggested to mark the “base” or “within” the
Period Comment

N
eo

-P
ro
te
ro
zo

ic Ediacarian (541–635 Ma) Within:
major CIMP LIP of Laurentia, Baltica & West Africa (multiple
pulses ca. 615, 590, 570, 550 Ma)
Youngest pulses (590–570 Ma) linked to Gaskier glaciation:
Grenville dykes, Catoctin volcanics of Laurentia;
Volyn LIP of Baltica (Shumlyanskyy et al., 2016a);
Ouarzazate event of West African craton

Base: no known LIP

580 Ma Gaskiers glaciation (Section 3.2.5) linked to
youngest CIMP pulse

640–635 Ma Marinoan glaciation (Section 3.2.5) no LIP
link

N
eo

-P
ro
te
ro
zo

ic Cryogenian (635–720 Ma) Base, at 725–715 Ma:
Franklin- Irkutsk LIP of combined Laurentia and Siberia
(Ernst et al., 2016a);
Mutare dyke swarm of the Kalahari craton;
Barangulov gabbro-granite complex in eastern Baltica
(Krasnobaev et al., 2007)

720–660 Ma Sturtian glaciation (Section 3.2.5) onset
linked to 725–715 Ma LIP

N
eo

-P
ro
te
ro
zo

ic Tonian (720–1000 Ma) Within: Rodinia supercontinent breakup LIPs
(920, 825, 780 Ma and 720 Ma) (Ernst et al., 2008; Li et al., 2008)

Base, at c. 1005 Ma:
Sette Daban sills of eastern Siberia (Rainbird et al., 1998)

Scale of this Sette Daban event is uncertain pending more
widespread U-Pb dating

M
es
o-
Pr
ot
er
oz

oi
c Stenian (1000–1200 Ma) Within, at 1110 Ma:

Keweenawan LIP of Laurentia
Umkondo LIP of Kalahari craton;
Rincon de Tigre – Huanchaca LIP of Amazonia;
GN (Huila) dykes of Congo craton;
Mahoba dykes of Bundelkhand craton

Base, at 1205 Ma:
Marnda Moorn LIP of the Yilgarn craton

Scale of 1110 Ma event and presence on many blocks (e.g.
De Kock et al., 2014) suggests significant environmental
effect

M
es
o-
Pr
ot
er
oz

oi
c Ectasian (1200–1400 Ma) Within, at 1270 Ma:

Mackenzie LIP of Laurentia.

Base, at 1385 Ma:
Midsommerso- Zig-Zag Dal LIP of eastern Laurentia,
Hart sills/volcanics & Salmon River Arch sills of western Laurentia,
Mashak LIP of eastern Baltica,
Chieress dykes of northern Siberia &
Kunene-Kibaran LIP of Congo craton
Vestfold Hills-4 dykes of East Antarctica &
perhaps ca. 1380–1350 Ma event of Kalahari craton.

Scale of 1385 Ma and presence on many blocks (e.g. Ernst
et al., 2008) suggest it is main breakup phases of Nuna-
Columbia supercontinent and that it should have major
environmental consequences

M
es
o-
Pr
ot
er
oz

oi
c Calymmian

(1400–1600 Ma)
Within, at 1501 Ma:
Kuonamka LIP of northern Laurentia (Ernst et al., 2016b),
reconstructed with
Chapada Diamantina – Curaçá dykes of Sao Francisco craton &
Humpata sills of Congo craton.

Within, at 1520 Ma:
Essakane LIP of West Africa.

Base, at 1590 Ma:
Gawler Range LIP & Olympic Dam IOCG deposit of Gawler craton,
reconstructed with (Hamilton and Buchan 2010)
Western Channel diabase & Wernecke breccias of NW Laurentia, &
Mammoth dykes of western Laurentia (Rogers et al., 2016a,b).
Also Tandil dykes of Rio de la Plata craton.

Base, at 1620 Ma:
Melville-Bugt LIP of Greenland, Laurentia

Olympic Dam is the largest IOCG deposit

Pa
le
o-
Pr
ot
er
oz

oi
c Statherian

(1600–1800 Ma)
Within, at 1750 Ma:
Timpton LIP of Siberia,reconstructed (Ernst et al., 2016a) with
Kivalliq event of Laurentia (Peterson et al. 2015).
Also Tagragra of Akka dykes of West African craton,
Espinhaco event of Sao Francisco craton &
Vestfold Hills-3 dykes of East Antarctica.
1800–1750 Ma AMCG magmatism of Sarmatia, with two main
pulses at ca. 1800 and 1750 Ma (Shumlyanskyy et al. 2016b)

Base, at 1790–1780 Ma:
Avanavero LIP of Amazonia,
Xiong’er-Taihang LIP of the North China craton &

The interval between 1790 and 1750 Ma is a particularly
dramatic time for LIP magmatism with most events
concentrated in two pulses at the ends of this interval
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Table 1 (continued)

Era
Precambrian
Period

LIP event suggested to mark the “base” or “within” the
Period Comment

Libiri dykes of West African craton.

Pa
le
o-
Pr
ot
er
oz

oi
c Orosirian (1800–2050 Ma) Within, at 1890–1860 Ma:

Circum-Superior LIP of Superior craton,
Mashonaland & Black Hills events of Kalahari craton (Olsson et al.,
2016) & Cuddapah-Bastar LIP of greater Indian craton.
Also Ghost-Mara River – Morel LIP of Slave craton reconstructed
with (Ernst et al., 2016a)
Kalaro-Nimnyrsky-Malodoisky event of southern Siberia (Ernst
et al., 2016a).

Within, at 1980–1970 Ma:
Pechenga-Onega of Karelia (Lubnina et al., 2016),
Xiwangshan dykes of North China craton,
Jhansi dykes of Bundelhand craton.

Within, at 1998 Ma:
Povungnituk- Minto-Eskimo (Kastek et al., 2016).

Base, at 2050–2030 Ma:
Kangamiut-MD3 LIP of North Atlantic craton,
Tagragra of Tata dykes of West African craton &
at 2030 Ma Lac de Gras – Booth River LIP of Slave craton.

Base, at 2058 Ma:
Bushveld LIP of Kalahari craton &
Kevitsa-Kuetsjarvi-Umba LIP of Karelia craton

The 1880–1870 Ma LIP pulse is associated with major
pulse of iron formations

Two large exogenous events occurred in this interval but
did not produce LIP-scale magmatism (1850 Ma Sudbury
bolide impact of southern Superior craton & 2030 Ma
Vredfort bolide impact of Kaapvaal craton)

2058 Ma of major LIPs marks the end of the dramatic
Lomagundi–Jatuli positive δ13C excursion, and indeed was
likely caused by these LIP events

Pa
le
o-
Pr
ot
er
oz

oi
c Rhyacian (2050–2300 Ma) Within, at 2125–2100 Ma:

Marathon LIP of Superior craton,
Indin LIP of Slave craton
Bear Mountain dykes of Wyoming craton
Griffin intrusions of Hearne craton)

Within, at 2170–2150 Ma:
Biscotasing LIP & Riviere due Gue dykes of Superior craton
Wind River dykes of Wyoming craton
Hengling dykes of North China craton.

Within, at 2190–2180 Ma:
Southwest Slave Magmatic Province of Slave craton
Tulemalu-MacQuoid dykes of Hearne craton
Dandeli dykes of Dharwar craton

Within, at 2220–2210 Ma:
Nipissing-Ungava LIP of Superior craton,
Koli (Karjalitic) sills of Karelia,
Somala dykes of Dharwar craton,
Turee-Creek-Cheela Springs event of Pilbara craton,
BN1 dykes of North Atlantic craton.

Within, at 2250 Ma:
Kaptipada dykes of Singhbhum craton (Srivastava et al., 2016)

Base: no LIP recognized

From a LIP perspective a better choice for the base of the
Rhyacian would be at 2370 Ma

Pa
le
o-
Pr
ot
er
oz

oi
c Siderian (2300–2500 Ma) Within, at 2330–2320 Ma:

Kuito-Taivalkovsiki event of Karelian craton (Stepanova et al.,
2015).

Within, at 2420–2370 Ma:
2420–2410 Ma Widgiemooltha LIP of Yilgarn craton
2410 Ma Sebanga Poort dykes of Zimbabwe
2400 Ma Ringvassoy dykes fragment in Norway linked to Karelian
craton
2380–2410 Ma Graedefjord-Scourie LIP of North Atlantic craton
2370 Ma Bangalore-Karimnagar LIP of Dharwar craton.

Within, at 2480–2450 Ma:
Matachewan LIP of Superior craton and reconstructed units
younger pulse of Baltic LIP in Karelia-Kola,
Mtshigwe dykes of Zimababwe
Woongara- Weeli Wolli LIP of Pilbara craton

Base, at 2510–2500 Ma
Mistassini LIP of Superior craton reconstructed with

2330 Ma new age for Great Oxidation event (Luo et al.,
2016) can be linked to newly recognized to Kuito-
Taivalkovsky magmatic event, of sub-LIP scale, but
predicted to grow in size with additional U-Pb dating

(continued on next page)
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Unlabelled image
Unlabelled image
Unlabelled image


Table 1 (continued)

Era
Precambrian
Period

LIP event suggested to mark the “base” or “within” the
Period Comment

older pulse of Baltic LIP (BLIP) of Karelia-Kola craton and with
Kaminak dykes of Hearne craton
Crystal Springs dykes of Zimbabwe

a Locations of LIPs in Fig. 1. Largest LIPs are included and also those with particular age correlation to known environmental effects. LIP event names bolded. Boundaries based on Ogg
et al. (2016). LIP information from Ernst (2014) unless otherwise noted.
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5.1. Differing effect of continental vs oceanic LIPs

As noted throughout this paper, there are important differences be-
tween the environmental effects of continental vs oceanic LIPs (Fig. 5).
The continental LIPs primarily have a dramatic effect on atmosphere, in-
cluding causing global warming, acid rain, ozone destruction, poisoning
(e.g. mercury) and cooling depending on the components of gas release.
Contintental LIPs also affect the marine record through the products of
weathering that are transported into the ocean, and the process of
weathering also reduces CO2 in the atmosphere, leading to cooling.
There is also interchange between the atmosphere and the ocean
(acid rain leading to ocean acidification, contribution to anoxia condi-
tions, fertilization leading to enhanced bio-production).

In contrast, oceanic LIPs mainly affect the marine realm (given that
they remain mostly sub-aqueous), and the effect of released gases is
buffered by seawater. Under favourable ocean compositions (i.e. non-
sulphate rich) they can transfer metals to ocean water, potentially lead-
ing to iron formations (andmanganese deposits) developing on shallow
shelfs. Ocean circulation patterns which, differ according to the macro-
environmental state, Greenhouse, Hothouse, or Icehouse (Kidder and
Worsley, 2010, 2012) and the sea-level (and availability of shelf
space) can lead to complicated patterns of oceanic composition with
depth and control the distribution of anoxia/euxinia events. In addition,
oceanic plateaus can potentially contribute to cooling through en-
hanced productivity leading to enhanced carbon burial (D. Kidder,
Pers. Comm. 2016). Kidder and Worsley (2010, 2012) suggested that
geologically short Hothouse excursions, that typically last b1 Myr can
be summarized as HEATT episodes, where HEATT stands for Haline
Euxinic Acidic Thermal Transgression.

While our record of continental LIPs through the Proterozoic is be-
coming more robust (Ernst et al., 2013; Ernst, 2014), it is important to
recognize that the majority of the oceanic LIP record is missing prior
to about 200 Ma. No major ocean basins are preserved prior to this
time and so the earlier oceanic LIPs (oceanic plateaus and ocean basin
flood basalts) are only preserved as fragments in orogenic belts. About
Table 2
Comparison of proposed “golden spikes” (events and ages) with LIP record.a

Age (after Van Kranendonk
et al., 2012, unless noted)

Event (as described by Van Kranendonk et al., 2012, unless

541 Ma First appearance of Ediacaran Fauna
630 Ma End of Global Glaciation
720 Ma Onset of Sturtian glaciation
850 Ma First appearance of d13C anomalies
1780 Ma First appearance of sulphidic marine deposits
2060 Ma End of LJE (Lomagundi–Jatuli positive δ13C excursion Event

of shungite deposition
2250 Ma First appearance of +δ13C anomalies +/or breakout magm
2310–2330 Ma 2330 Ma pulse of Great Oxidation event (Luo et al., 2016)
c. 2430 First appearance of glacial deposits (2420 to 2440 Ma by G
2630 Ma First appearance Hamersley Basin BIF
2780 Ma First appearance of continental flood basalts and/or positiv

values
3020 Ma First appearance of terrestrial basins

a “Golden spike” information from van Kranendonk et al. (2012) and Ogg et al. (2016) and
100 oceanic LIPs are likely missing in the record back to 2.5 Ga (Dilek
and Ernst, 2008); there are aspects of the anoxia and iron formation re-
cord and other environmental effects (preserved in the older sedimen-
tary record) which must presumably be linked with this missing
oceanic LIP record. Ongoing studywill continue to reveal ophiolite frag-
ments in the orogenic belts that represent former these oceanic LIPs.
Further isotopic/geochemical study of the sedimentary record can po-
tentially recognize the effects of missing oceanic LIPs and give predic-
tions on their timing.

5.2. Uncertainty in the volume of LIP

Continental LIPs need to be better constrained in order to better pre-
dict their environmental effects and test against the observed environ-
mental changes. It is thought that most of the continental LIPs in the
Phanerozoic and Proterozoic have now been identified (Ernst et al.,
2013; Ernst, 2014). However, for many of these LIPs, particularly of Pro-
terozoic age, their overall size is unknown. As noted above the size of
LIPs has an influence (although not necessarily dominant) on their en-
vironmental impact. There are two aspects to improving our under-
standing of the size of LIPs: 1) determining their original extent in a
region and 2) tracing them between now-separated crustal blocks
that were formerly adjacent (e.g. Ernst et al., 2013, 2016a, 2016b).
Both aspects are more of a problem in the Proterozoic than in the Phan-
erozoic. In older LIPs the flood basalt component has typically been
eroded and so most Proterozoic LIPs are only recognized by their ex-
posed intrusive component (their plumbing system). Therefore, region-
al dating accompanied by geochemical and paleomagnetic correlation is
required to determine the full distribution of intrusives (dykes, sills and
layered intrusions) that belong to a LIP, and fromwhich the original ex-
tent of the flood basalts can be estimated.

Another important aspect is the distribution of the flood basalts vs
the intrusive component. It is increasing recognized (Section 3.1.3)
that there are two modes of gas release in LIPs—direct release of gases
fromflood basalts and also gases carried to the surface via hydrothermal
otherwise noted) LIP event that can be linked

? youngest pulse of CIMP
? start of CIMP
Franklin-Irkutsk LIP (Laurentia-Siberia) (Ernst et al., 2016a)
?
Avanavero LIP (Amazonia) and coeval units (see Table 1)

)/Start Bushveld LIP (Kaapvaal) & Keivitsa-Kuetsjarvi-Umba LIP
event (Baltica)

atism Kaptipada dykes (Singbhum)
Kuito-Taivalkovsky LIP of Karelia

umsley et al., 2017) Last pulse of Matachewan LIP (Superior) & coeval units.
?

e δ13C kerogen Mount Roe-Black Range LIP (Fortescue-1) (Pilbara) &
Derdepoort-Gaberone LIP (Ventersdorp-1) (Kaapvaal)
?

LIP record is extracted from Ernst (2014) unless otherwise noted.
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vent complexes (HVCs) from the interaction of intrusives (mainly sills)
with volatile-rich sedimentary rocks. The role of the intrusive compo-
nent in the oceanic LIP record is unknown.

5.3. Difference between single-pulse and multi-pulse LIPs

Besides the size (volume) of LIP magmatism the other factor that is
of particular significance is the duration of LIP pulses. As discussed in
Section 2 there aremany LIPs inwhich the greatmajority ofmagmatism
was emplaced in an extremely short period of timeon the order of aMyr
or less. Examples include the 66 Ma main pulse of Deccan, the 55 Ma
second pulse of the NAIP, 201 Ma CAMP, 252 Ma Siberian Traps,
259 Ma Emeishan. Such precise dating confirmed their link with mass
extinctions (Section 2.1). Other less-precisely dated LIPs in the Precam-
brian record exhibit a single grouping of ages (to a few Myr precision)
and may also represent a single short duration pulse, which should
therefore be correlated with dramatic environmental changes. Exam-
ples include the 1267 Ma Mackenzie LIP, 1385 Ma Mashak (and other
coeval LIPs), 1501 Kuonamka LIP, and 1755 Ma Timpton LIP (see
Tables 1 and 2). Other LIPs consist of definitemultiple pulses over a lon-
ger duration. The Keweenawan LIP consists of multiple pulses between
1115 and 1085 Ma with a main pulse at ca. 1100Ma. The CIMP event is
multi-pulsed between 615 and 555 Ma and its precise age structure
needs to be determined for more definitive comparison with the envi-
ronmental record, which just precedes the Cambrian “explosion of
life”. A similar observation applies to the oceanic LIP record with both
single pulse and multi-pulse LIPs recognized.

All LIP events need to be dated to the same high precision (ca.
b0.1 Myr) as those Phanerozoic LIPs mentioned above, with a goal to
identify those Precambrian LIPs of particularly short duration which
should have the greatest environmental effect. It is also critical to obtain
more precise chronology of the isotopic and compositional excursions
recorded in the Precambrian sedimentary record in order to more pre-
cisely compare the interpreted seawater record with LIP timing.
Through such studies it will become clear which Precambrian LIPs are
linked to major environmental change (warming, cooling, anoxia, acid-
ification, etc.).

6. Conclusions

The rapidly accelerating research on the environmental and climatic
changes in the Earth system is revealing a robust link between Large Ig-
neous Provinces (LIPs) and major environmental catastrophes through
time. In several cases LIPs with the highest precision U-Pb dating are
precisely linked to mass extinction events.

LIPs are implicated directly or indirectly in a variety of environmen-
tal change mechanisms: global warming, global cooling (glaciations),
anoxia, toxic gas or metal release, acid rain, ocean acidification., and
stepwise oxygenation of the atmosphere. The robust linkages are partic-
ularly clear in the Phanerozoic record, but should apply to the Protero-
zoic and Archean record where LIPs of similar scale and frequency of
occurrence are observed (averaging 20–30 Myr back to 2.5 Ga). Those
largest Proterozoic LIPs are identified as potential climate changers,
and inmany cases match closely in time to boundaries in both the stan-
dard (Table 1) and newer “natural” (Table 2) Precambrian time scales.
This suggests a role for LIPs as proxies for global environmental changes
that can be recorded in the sedimentary record andmarked by ‘golden-
spikes’.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.palaeo.2017.03.014.
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